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Abstract. I propose a discrete model for the Gell-Mann matrices, which
allows them to participate in discrete symmetries of three generations of four

types of elementary fermions, in addition to their usual role in describing a

continuous group SU(3) of colour symmetries. This model sheds new light
on the mathematical (rather than physical) necessity for ‘mixing’ between the

various gauge groups SU(3), SU(2) and U(1) of the Standard Model.

1. Introduction

1.1. Context, aims and objectives. The Gell-Mann matrices [1, 2] are a par-
ticular choice of orthonormal basis for the (complex) Lie algebra su(3), analogous
to the Pauli matrices which form a basis for su(2). They are an essential part of
the calculational tools of quantum chromodynamics (QCD) as a description of the
strong nuclear force [3, 4]. The analogy with Pauli matrices is not complete, how-
ever, since the Pauli matrices are unitary, but the Gell-Mann matrices are not. In
particular, the Pauli matrices are non-singular, so they can also be used to describe
a finite group of discrete (unitary) symmetries. This is useful for describing the
discrete symmetries of weak isospin, that distinguishes electrons from neutrinos.

Specifically, the Pauli matrices generate a commuting product of the cyclic group
Z4 of order 4 with the quaternion group Q8 of order 8, giving a finite analogue of
the gauge group U(1)Y × SU(2)L of weak hypercharge and weak isospin. But the
‘mixing’ of weak hypercharge and weak isospin to create electric charge implies that
U(1)em does not commute with SU(2)L. The only reasonable way to accommodate
this property in the finite groups is to take a cyclic group Z3 in place of U(1)em,
and let Z3 act as automorphisms of Q8. This leads to a group of order 24, known
as the binary tetrahedral group (among many other names), which is a semi-direct
product Q8 o Z3 of Q8 and Z3, rather than a direct product Q8 × Z3. Possible
applications of this finite group to the modelling of elementary particles, and in
particular of electro-weak mixing, are explored in [5, 6, 7, 8, 9, 10].

The Gell-Mann matrices, by contrast, are singular, so they do not generate a
finite group, and they cannot be used for discrete symmetries such as the three-
generation symmetry of electrons. This means that the three generations have to be
added to the Standard Model ‘by hand’, rather than arising automatically from the
formalism. The aim of this paper is to describe a method by which the Gell-Mann
matrices can be given a discrete structure that might be useful for this purpose.
I also explore options for mixing the strong force with the electro-weak forces by
the process of using semi-direct products of the finite groups in place of the direct
products of Lie groups. It turns out that there is a unique possibility, arising from
a particular three-dimensional complex reflection group [11, 12] of order 648.
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Indeed, it is possible to extend this process one stage further, to include the
Dirac matrices [13]. In a continuous model, this is not possible, as the Coleman–
Mandula Theorem [14] tells us. But this theorem only applies to models based on
Lie groups, and does not apply to models based on finite groups. I shall show that
there is a unique possible action of the proposed finite analogue of the gauge group
of the Standard Model on an appropriate finite analogue of the Dirac matrices.
This requires extending the Dirac matrices from complex to quaternionic, in order
to incorporate three generations of fermions, and extends the usual group of order
64 to order 128. The resulting ‘unification’ of Dirac, Gell-Mann and Pauli matrices
into a single structure forms a group of order 82944, consisting of 4× 4 quaternion
matrices, that is a subgroup of a quaternionic reflection group [15, 16].

If this group is useful for physics, then it certainly goes beyond the Standard
Model of Particle Physics, because it allows the Gell-Mann matrices and the Pauli
matrices to act on the Dirac matrices, instead of commuting with them. In other
words, it allows particle physics to determine the shape of spacetime, and possibly
thereby to include a quantum theory of gravity. The main aim of this paper,
however, is to explain the representation theory of the group of order 648 in relation
to the Standard Model, rather than speculating about quantum gravity.

An important part of this aim is to understand how the action of Pauli matrices
on the extended (quaternionic) Dirac matrices restricts to the Standard Model
implementation of electro-weak mixing on the ordinary (complex) Dirac matrices.
Similarly, the action of the Pauli matrices on the (modified) Gell-Mann matrices
needs to be understood in the context of weak-strong mixing. In all cases, the finite
group can give only the combinatorial structure of this mixing, without numerical
values. The numerical values can only arise from choosing coordinates for the
representations of the group, about which this model says nothing.

1.2. Pauli matrices. The standard textbook Pauli matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(1)

that is, the Hermitian matrices in physicists’ convention. These give rise to elements
of SU(2) via complex exponentiation as follows:

exp(iσxθ) =

(
cos θ i sin θ
i sin θ cos θ

)
, exp(iσyθ) =

(
cos θ sin θ
− sin θ cos θ

)
,

exp(iσzθ) =

(
eiθ 0
0 e−iθ

)
.(2)

In addition there is a scalar matrix i = σxσyσz which exponentiates to

exp(iθ) =

(
eiθ 0
0 eiθ

)
(3)

as elements of a scalar group U(1). If this copy of SU(2) is used for weak isospin,
then the corresponding copy of U(1) is used for weak hypercharge.

Mathematicians prefer to put the multiplication by i into the definition of the
matrices, instead of the exponentiation, so using the anti-Hermitian matrices

K =

(
0 i
i 0

)
, J =

(
0 1
−1 0

)
, I =

(
i 0
0 −i

)
(4)

in which the matrices K,J, I behave like quaternions IJ = −JI = K etc.
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All the Pauli matrices, whether Hermitian or anti-Hermitian, are also unitary,
as are the scalars. Therefore they generate finite subgroups of U(2): in place of
U(1)Y we have a cyclic group Z4 of order 4 generated by the scalar i, and in place of
SU(2)L we have a quaternion group Q8 of order 8, generated by iσx, iσy and iσz. In
other words, there is a third interpretation of the Pauli matrices, as generators for
unitary representations of a finite group, as well as the conventional interpretations
as generators for unitary groups and Lie algebras. Such an interpretation is useful
in cases (such as weak isospin) in which the underlying symmetry is discrete.

1.3. A 3-dimensional analogue. The Gell-Mann matrices in physicists’ conven-
tion are 3× 3 analogues of the Hermitian traceless Pauli matrices:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

(5)

Again, the mathematicians’ convention is to multiply by i to get anti-Hermitian ma-
trices, which can then be exponentiated to get unitary matrices generating SU(3).
In both cases, the Gell-Mann matrices form a basis for the 8-space of complex 3×3
traceless matrices.

There are other possible bases, and it is suggested in [17] that a basis of real
matrices might be more fundamental, for mathematical rather than physical rea-
sons. But in none of these conventions are the matrices themselves unitary, so that
the finite symmetries one might hope to see (such as the generation symmetry for
fundamental fermions) are not directly available in the standard formalism. In fact
it is easy to write down an orthonormal basis of unitary matrices, as I shall now
demonstrate.

The natural analogue in three dimensions of the quaternion group (of order
23 = 8) in two dimensions is the group G27 of order 33 = 27 generated by the
matrices 1 0 0

0 exp(2πi/3) 0
0 0 exp(4πi/3)

 ,

0 1 0
0 0 1
1 0 0

(6)

Writing v = exp(2πi/3) and w = v2 = exp(4πi/3) for simplicity, the trace zero
matrices form a complex 8-space with the following orthonormal basis:1 0 0

0 v 0
0 0 w

 ,

1 0 0
0 w 0
0 0 v

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
1 0 0
0 1 0

 ,

0 1 0
0 0 v
w 0 0

 ,

0 1 0
0 0 w
v 0 0

 ,

0 0 1
v 0 0
0 w 0

 ,

0 0 1
w 0 0
0 v 0

 .(7)
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The first four are the generators (6) and their inverses, and the last four are the
products of the first two with the next two. The generators (of order 3) do not
commute with each other, and the commutators x−1y−1xy are scalar matrices of
order 3. In other words, there is a scalar group of order 3 hidden in this group,
consisting of scalars 1, v, w, so that when we exponentiate these matrices there is
a threefold ambiguity in the overall phase, corresponding to the fact that the Lie
group SU(3) has a centre consisting of scalars of order 3, The above matrices are
all unitary, and all have determinant 1, so that the group of order 27 that they
generate is a finite subgroup of SU(3).

Moreover, these 8 matrices span the same complex 8-space as the 8 Gell-Mann
matrices, namely the space of all complex matrices with trace zero. I therefore
suggest that using these 8 matrices in place of the 8 Gell-Mann matrices makes
essentially no difference to the Standard Model, as it is just a change of basis on
the space of gluons. But it has the huge advantage over the Gell-Mann matrices,
of incorporating finite (triplet) symmetries in a natural way. Indeed, it contains
two, or even three, independent triplet symmetries, and may therefore be able to
accommodate generation symmetries as well as colour (and anti-colour) symmetries.

1.4. A 4-dimensional analogue. The Dirac matrices are 4× 4 complex matrices
that have a similar structure to that of the Pauli matrices and Gell-Mann matrices.
But in this case both Hermitian and anti-Hermitian matrices are required, and the
group that is normally used is SL(2,C), rather than SU(4) or SL(4,R). The Dirac
matrices are all unitary, however, and they generate a group of order 26 = 64. A
more natural analogue ofQ8 andG27, however, is a so-called extraspecial group E128

of order 128 obtained by adjoining a complex conjugation operator, and thereby
extending to 8 dimensions.

In principle, there is a choice as to whether the complex conjugation operator
squares to +1 or −1, but it turns out that in order to fit the Dirac matrices to-
gether with the Gell-Mann matrices it is necessary to take the −1 case. Then the
representation is quaternionic, which means it can also be written as a group of
4× 4 quaternion matrices. The group E128 requires six generators, such as

i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 i

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , iγ1γ2γ3 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,


j 0 0 0
0 j 0 0
0 0 j 0
0 0 0 j

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , iγ0γ2 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .

(8)

These generators are arranged in such a way that the three columns generate three
mutually commuting copies of the quaternion group Q8.

The names above are given according to the standard Bjorken-Drell convention
[18], but many other arrangements are possible. For example, it is possible to
choose γ1γ2, γ2γ3 and γ1γ3 as elements of one of the Q8 factors, and iγ0, iγ5 and
γ0γ5 as elements of the other Q8 factor. This choice gives a useful mathematical
separation of the properties that depend on a direction in space (such as spin and
momentum) from those that do not (such as energy, mass and weak isospin).
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It is well-known that the outer automorphism group of this group of order 27 is
isomorphic to the Weyl group of type E6, so that it is straightforward to calculate
any necessary properties. In fact there are 120 subgroups isomorphic to Q8, and
they are all equivalent under the automorphism group, so we can take any one of
them to represent the non-relativistic spin group as above. We then need to choose
γ0 and γ5 from the nine elements of order 2 (up to sign) that commute with this
copy of Q8. The automorphism group acts transitively on these 9 elements, and the
stabiliser of one of them acts transitively on the four that anti-commute with it.
Hence all choices of Dirac matrices are mathematically equivalent. In particular,
there is no reason to choose the Bjorken–Drell convention, or the ‘chiral’ convention
(in which γ0 and γ5 are swapped, relative to the Bjorken–Drell convention), if
other conventions provide simpler notation for physically important concepts. Our
conventions, and the reasons behind them, will be explained in Section 3.1.

2. Extensions

2.1. The binary tetrahedral group. The quaternion group has an automor-
phism of order 3, that cycles the elements i, j and k, and that can be represented
explicitly in the quaternion algebra by the matrix

(−1 + I + J +K)/2 =
1

2

(
−1 + i 1 + i
−1 + i −1− i

)
=

1 + i

2

(
i 1
i −1

)
(9)

This matrix extends the quaternion group Q8 to a group of order 24 that is known
as the binary tetrahedral group. The above matrices give a representation of this
group inside SU(2), but it also has a representation inside U(2) that is not in
SU(2). These facts may be significant for the mixing of electrodynamics with the
weak interaction.

At the more abstract group theory level, we have constructed a semi-direct prod-
uct of Q8 by Z3, which we denote Q8 o Z3. The subgroup Q8 generated by the
matrices K, J , I in (4) is normal, but the subgroup Z3 generated by the above
matrix W is not. In place of the relations IW = WI, JW = WJ that hold in the
direct product, we have the relations IW = WJ and JW = WK. The continuous
analogue of Q8 is SU(2), and the continuous analogue of Z3 is U(1), so that the
effect of this semi-direct product is to create a more complicated relationship be-
tween SU(2) and U(1) than the direct product SU(2)×U(1). In physics language
this relationship is a ‘mixing’ of SU(2) with U(1) at the quantum level.

2.2. A ternary representation. In fact, the binary tetrahedral group can itself
act as automorphisms of the group G27 of order 27 described above. We may first
take generators for the quaternion subgroup Q8 as

v − w
3

1 1 1
1 v w
1 w v

 ,
v − w

3

1 v v
w v w
w w v

 ,(10)
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and check all the required relations explicitly. The calculations are all minor vari-
ants of the equation0 1 0

0 0 1
1 0 0

1 1 1
1 v w
1 w v

 =

1 v w
1 w v
1 1 1


=

1 1 1
1 v w
1 w v

1 0 0
0 v 0
0 0 w

(11)

which shows how the first of the given automorphisms converts permutation ma-
trices into diagonal matrices.

At this stage we have a group of order 216 that combines finite analogues of
SU(3) and SU(2) into a single group. This is a semi-direct product G27 o Q8, in
which the subgroup G27 is normal, but the subgroup Q8 is not. Since it is not a
direct product, it does not give rise to a direct product SU(3)×SU(2), but instead
‘mixes’ the two gauge groups.

Finally we can add in a matrix with determinant v, such asv 0 0
0 1 0
0 0 1

(12)

in order to incorporate U(1) as well, extending the quaternion group to the binary
tetrahedral group. This gives us altogether a group of order 23.34 = 648 (the triple
cover of the Hessian group) that can be interpreted as a finite analogue of the
complete gauge group U(1)× SU(2)× SU(3) of the Standard Model.

But the finite group is not a direct product of three factors in the way that the
Lie group must be. It is an iterated semi-direct product Q27 oQ8 o Z3. Thus the
finite analogues of the three factors are mixed together in quite a complicated way,
which may have important consequences for the ‘mixing’ of the different forces in
the Standard Model. We have already discussed electroweak mixing in the context
of Q8 o Z3, but here we have a much more complicated weak-strong mixing in
G27 o Q8, as well as electro-strong mixing in G27 o Z3. Further details will be
discussed below.

2.3. A complex reflection group. The group of order 648 is generated by the
conjugates of (12), which has one eigenvalue v and two eigenvalues 1. An invertible
matrix with a single non-trivial eigenvalue is known as a reflection. Real reflections
have real eigenvalues, so the non-trivial eigenvalue is −1, but complex reflections
can have any root of unity as an eigenvalue. Our group is therefore a 3-dimensional
complex reflection group. There are 24 reflections altogether, in 12 ‘mirrors’ defined
by the complex vectors

(t, 0, 0) (1, 1, 1) (v, 1, 1) (w, 1, 1)
(0, t, 0) (1, v, w) (1, 1, v) (1, w, 1)
(0, 0, t) (1, v, w) (1, v, 1) 1, 1, w)

(13)

where t = v − w. The two reflections in the mirror r are

x 7→ x− (1− λ)
x.r

r.r
r(14)

where λ = v or λ = w.
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The four mirrors given in the top row generate one of the nine copies of the binary
tetrahedral group, acting on the 2-dimensional subspace perpendicular to (0, 1,−1).
In particular, this group is a 2-dimensional complex reflection group. The images
of the (anti-Hermitian) Pauli matrices can be written as products of two reflections
of order 3 (with opposite determinants). This representation is, however, quite
different from the usual representation of the (Hermitian) Pauli matrices as real
reflections in a complex 2-space, which does not appear in this model.

If we expand the complex 1-spaces to real 2-spaces, then the six complex scalar
multiples of 12 complex 3-vectors become two real scalar multiples of 36 real 6-
vectors, and the corresponding 36 real reflections generate the Weyl group of E6.
In other words, the group G27 o Q8 o Z3 is a subgroup of the Weyl group of E6,
and is in fact a maximal subgroup of the rotation part of the Weyl group. It is
possible that this fact may have led to the appearance of E6 symmetry in certain
Grand Unified Theories (GUTs) such as [19, 20].

2.4. A quaternionic reflection group. The action of G27 on E128 is more dif-
ficult to calculate, but much of the work has been done for us in [15, 16], It is
probably easiest to start from the quaternionic reflection group called S3 in [15],
which happens to be an extension of E128 by the rotation subgroup of the Weyl
group of type E6. Quaternionic reflections are given by essentially the same formula
(14) as for complex reflections, with appropriate choices for the quaternionic scalar
λ, except that in order to ensure that reflections are linear maps it is necessary to
re-order the product as follows.

x 7→ x− x.r

r.r
(1− λ)r(15)

This then ensures that replacing x by a scalar multiple µx gives the same scalar
multiple on the right hand side. Moreover, replacing r by a scalar multiple µr
replaces x.r by (x.r)µ̄, so changes the scalar 1− λ to 1− µ−1λµ. Hence reflections
of order 2, with λ = −1, are invariant under this operation, but other reflections
are not.

The group G27 can be generated by the products of pairs of reflections of order
2 in the mirrors defined by

(2, 0, 0, 0), (±1, 1, 1, 1), (±1, i, j, k), (±1, j, k, i), (±1, k, i, j)(16)

Indeed, we can take the products of the first reflection with the other 8 to represent
the 8 Gell-Mann matrices. Generators for the full group of order 648 can then be
taken as

1

2


−1 1 1 1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 ,


1 0 0 0
0 i 0 0
0 0 j 0
0 0 0 k

 ,


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

(17)

The first matrix above represents one of the Gell-Mann matrices in G27, the second
one of the Pauli matrices in Q8, and the last is a generator for Z3.

There is some ambiguity about which matrix to use for Z3, since it can be mixed
with the scalar part of G27, also of order 3. In the Standard Model, this mixing
is done with two copies of U(1), and is therefore in principle represented by an
arbitrary angle, called the CP-violating phase of the Cabibbo–Kobayashi–Maskawa
(CKM) matrix [21, 22]. The discrete model at this stage does not tell us anything
about the value of this angle.
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3. The structure of the combined group

3.1. Dirac matrices. The Dirac matrices for three generations generate the ex-
traspecial group E128, which is a commuting product of three copies of Q8. There
are 40 different ways in which the group can be written as such a product, but all
are equivalent under the action of the Weyl group of E6 as the outer automorphism
group. Hence we may take the factorisation as the columns in (8) as the ‘standard’
one. However, the appropriate interpretations of the three factors are far from
clear.

For example, as a first tentative suggestion, we can separate the quaternions
i, j, k to generate one copy of Q8 to describe the three generations, and use the real
matrices for two other copies of Q8 to describe spin and weak isospin. It therefore
makes sense to separate the spin copy of Q8 from the weak isospin copy, as follows:

γ1γ2 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , γ0γ5 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,

γ2γ3 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , iγ0 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .(18)

This allocation shows that we can only get an energy term in γ0 if we attach a
generation label i, j or k. Indeed, the same is true for the momentum terms in γ1,
γ2 and γ3.

To see this, we can take generators for the real Clifford algebra Cl(3, 1) as follows:

iγ3 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , iγ2 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 ,

iγ1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , iγ0 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .(19)

and extend to the complex Clifford algebra, or Cl(4, 1), by adjoining

γ5 =


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

(20)

With our conventions, the matrices γ0, γ1, γ2, γ3 and γ5 are all real matrices
times i. This enables us to reduce from the proposed three-generation model of
Dirac matrices to the standard one-generation model by choosing an appropriate
imaginary ‘scalar’ i. But of course, the symmetry allows us to choose j or k for the
other two generations, if this our choice of interpretation. In any case, the choice
of real matrices for a model without a generation label (or perhaps better, a model
without mass) requires the reversed signature, but only Cl(1, 3).
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The full 4 × 4 quaternion matrix algebra can also be interpreted as a Clifford
algebra for a 6-dimensional real space with signature (6, 0), (5, 1), (2, 4) or (1, 5).
Many models of this type have been proposed [23, 24, 25, 26], including the Pati–
Salam model based on SU(4) = Spin(6), and the twistor theory of Penrose, based
on the Clifford algebra Cl(2, 4) and the corresponding spin group isomorphic to
SU(2, 2). Twistors can equally well be given the opposite signature, so that the
matrix algebra underlying Cl(4, 2) is the algebra of 8× 8 real matrices. Models of
this type have also been proposed [27], but it would appear from this discussion
that the signature Cl(5, 1) is most likely to provide the closest fit to the Standard
Model, and to observed physics, depending of course on the details of the physical
interpretation of the mathematical structure.

The Dirac matrices above now act on columns of four quaternions, as a general-
isation to three generations of the standard Dirac spinors, that are columns of four
complex numbers. The projections with 1± γ5 onto left-handed and right-handed
(Weyl) spinors are a little more complicated than in the standard conventions, and
also depend on the generation. But this is a small price to pay for incorporating
the generation structure of the elementary fermions directly into the Dirac spinors.
At the same time, we see that three generations only require twice as many spinors
as one generation, as has also been pointed out in [17, 28]. This refutes one of
the arguments in [29] that purports to prove the non-existence of an E8 model of
fundamental physics.

3.2. Gell-Mann matrices. The full set of 8 Gell-Mann matrices can be taken as
the following four matrices and their conjugate transposes:

1

2


−1 1 1 1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 ,
1

2


−1 i j k
i 1 k −j
j −k 1 i
k j −i 1

 ,

1

2


−1 j k i
j 1 i −k
k −i 1 j
i k −j 1

 ,
1

2


−1 k i j
k 1 j −i
i −j 1 k
j i −k 1

 .(21)

The two real matrices here correspond to the two colourless gluons, and the other
six to the coloured gluons. The group of order 27 generated by these matrices
contains a centre of order 3, generated by

v 0 0 0
0 0 v 0
0 0 0 v
0 v 0 0

(22)

where v = (−1 + i+ j + k)/2. This matrix acts on the Dirac matrices to permute
the three generations defined by i, j and k. At the same time, it permutes the three
directions of spin, defined by γ1γ2, γ2γ3 and γ3γ1.

But it is important to note that replacing v by w in (22) can only be done if
the coordinate permutation is also inverted. The chirality of the weak interaction
ultimately arises from this important fact, as we shall see when we consider the
representation of the Pauli matrices.
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3.3. Pauli matrices. The (anti-Hermitian) Pauli matrices generating Q8 are rep-
resented by the diagonal matrices

1 0 0 0
0 i 0 0
0 0 j 0
0 0 0 k

 ,


1 0 0 0
0 j 0 0
0 0 k 0
0 0 0 i

 ,


1 0 0 0
0 k 0 0
0 0 i 0
0 0 0 j

 ,(23)

acting on the spinors. These matrices commute with (22), but are permuted by
both the ‘scalar’ v and the coordinate permutation separately. The scalar acts by
permuting the three generations, but leaving the spin direction alone, while the
permutation acts on the spin direction but not on the generation. The fact that
the matrix (22) couples the cyclic ordering of the three generations to the cyclic
ordering of the three directions of spin is what is known as the chirality of the weak
interaction. Conventionally this chirality is left-handed, so that the copy of SU(2)
generated by the Pauli matrices above is denoted SU(2)L.

The way chirality is implemented in the Standard Model is by restricting to
the third component of weak isospin, represented say by the first matrix in (23),
and realising j as complex conjugation, so that the bottom half of the Dirac spinor
behaves as a Weyl spinor that is the complex conjugate of the top Weyl spinor. Thus
the proposed model is a straightforward generalisation of the Standard Model at
this point, and incorporates all three components of weak isospin.

We can now extend from Q8 to the binary tetrahedral group by adjoining any
one of the three matrices

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 ,


v 0 0 0
0 v 0 0
0 0 v 0
0 0 0 v

 ,


v 0 0 0
0 0 0 v
0 v 0 0
0 0 v 0

 .(24)

As noted above, the first of these acts on the colours, and on the direction of spin,
but not on the generations. The second one acts on the colours and the generations,
but not on the direction of spin. The third one acts on all three.

4. Representations and characters

4.1. Continuous gauge groups. So far we have only looked at the combinatorial
structure of the group, which gives a qualitative but not quantitative picture of
the underlying physics. In order to introduce measurable physical quantities such
as mass, momentum and energy, and allocate them to elementary (or composite)
particles we need to introduce real (or complex or quaternionic) representations,
and use real (or complex or quaternionic) gauge groups to choose coordinates for
the representations. There are four fundamental representations, described above,
given by the embeddings of finite groups in Lie groups as follows:

Z3 ⊂ U(1)

Q8 o Z3 ⊂ Sp(1) ∼= SU(2)

G27 oQ8 o Z3 ⊂ U(3)

E128 oG27 oQ8 o Z3 ⊂ Sp(4)(25)

The first three are closely related to the gauge groups U(1), SU(2) and SU(3) of
the Standard Model, while the last is not in the Standard Model at all.
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In each case, the real scalar factor has been taken out of the gauge group, since it
only defines a unit of measurement, rather than a genuine physical property. In the
case of U(1) acting on a complex 1-dimensional representation, we are left therefore
with one physical parameter to measure, which can be represented as an angle,
or phase, in the complex plane. In the case of SU(2) acting on a 1-dimensional
quaternionic representation, there are three such angles. Therefore by studying
the representations of the binary tetrahedral group Q8 o Z3, we might expect to
find four of the fundamental mixing angles of the Standard Model, including the
electro-weak mixing angle (Weinberg angle). A tentative identification of these four
angles is obtained in [9].

In the case of U(3), there are five independent angles associated with the 3-
dimensional complex representation, bringing the total number of mixing angles
up to 9, which accounts for the Weinberg angle plus four each in the CKM and
PMNS (Pontecorvo–Maki–Nakagawa–Sakata) matrices [30, 31]. We have a further
15 parameters in the coordinates of the 4-dimensional quaternionic representation
on the spinors. If we take at face value the proposed use of this representation for a
theory of gravity, then we should expect these parameters to be masses of elemen-
tary particles. The Standard Model nowadays has 15 mass parameters, including
12 for the elementary fermions, plus the W , Z and Higgs bosons.

Finally, note that by restricting the 4-dimensional representation to subgroups
Z3, Q8 o Z3 and G27 oQ8 o Z3 we obtain the first three representations again. It
is therefore entirely possible that the 9 mixing angles of the Standard Model are
redundant parameters, and can be derived from the 15 masses. This is known to
be the case for the electro-weak mixing angle, which is derived from the mass ratio
of the W and Z bosons. In [9] three more such derivations are proposed.

4.2. Clifford theory. The standard method of constructing representations and
characters of semi-direct products is Clifford theory [32], which is also used more
generally whenever a group has a normal subgroup. Since the group E128 oG27 o
Q8oZ3 has 8 normal subgroups, forming a single chain, we can work our way down
the chain, from the largest normal subgroup to the smallest, adding new representa-
tions at each stage. The method is standard, and the calculations straightforward,
so I do not give many details.

At the first stage, we have only the trivial quotient group, and the trivial repre-
sentation. At the second stage, we have a quotient Z3, which adds a 2-dimensional
real representation, or equivalently a 1-dimensional complex representation and its
complex conjugate. At the third stage, the quotient group is the alternating group
A4 on four letters, and the new representation is the monomial representation of
the group acting by conjugation on the three Pauli matrices, with signs attached.

At the fourth stage, we have the fundamental pseudoreal representation as
quaternions, with Z3 as the corresponding ‘inertial quotient’, so that the other
representations at this stage are obtained by tensoring with the representations of
Z3. This gives us a pair of complex conjugate two-dimensional representations,
or equivalently a real four-dimensional representation. Putting all these stages to-
gether gives us the representations of the binary tetrahedral group, which are very
well known and have been widely studied. The character table can be found in
[33, p.404] and is reproduced here for convenience, in a shorthand form in which
conjugacy classes that are scalar multiples of each other are grouped together:
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±1 K ±W ±W 2

1a 1 1 1 1
1b 1 1 v w
1c 1 1 w v
3 3 −1 0 0
2a ±2 0 ∓1 ∓1
2b ±2 0 ∓v ∓w
2c ±2 0 ∓w ∓v

(26)

Of particular significance here is that the three faithful representations are obtained
by taking the fundamental representation 2a and tensoring with the representations
1a, 1b and 1c of Z3. This type of pattern is a general feature of Clifford theory,
and is a generalisation of the decomposition of representations of direct products
of groups as tensor products of representations of the factors. In particular, we
have a discrete version of the decomposition of representations of U(1) × SU(2),
but with the ‘mixing’ of U(1) with SU(2) already incorporated into the mathe-
matical structure. A combinatorial version of the mixing occurs already at the
group-theoretical level, but a quantitative estimate of the mixing angle can only be
obtained by looking in detail at the coordinates of the representations.

4.3. The Hessian group. Coming now to G27, whose character table can be
found in [33, p.400] we first take a 1-dimensional complex representation, with
inertial quotient Z3, and induce up to the whole group G27 o Q8 o Z3, to get
an 8-dimensional real representation, together with its tensor products with the
representations of Z3. The scalars in G27 act trivially on these representations, so
they are representations of a group (Z3 × Z3) o Q8 o Z3 of order 216, which has
been known as the Hessian group since the 1870s.

The table of characters of the complex irreducible representations of the Hessian
group is as follows. The vertical lines delineate normal subgroups, so that the first
two columns comprise the normal subgroup G27/Z3

∼= Z3 × Z3, generated by the
modified Gell-Mann matrices modulo scalars, and the next two columns comprise
the quaternion group Q8 generated by the Pauli matrices. The horizontal lines
separate cohorts of characters for the various quotient groups. The top two rows
contain the centralizer orders and the sizes of the conjugacy classes, respectively.

216 27 24 4 18 9 6 18 9 6
1 8 9 54 12 24 36 12 24 36
1 1 1 1 1 1 1 1 1 1
1 1 1 1 v v v w w w
1 1 1 1 w w w v v v
3 3 3 −1 0 0 0 0 0 0
2 2 −2 0 −1 −1 1 −1 −1 1
2 2 −2 0 −v −v v −w −w w
2 2 −2 0 −w −w w −v −v v
8 −1 0 0 2 −1 0 2 −1 0
8 −1 0 0 2v −v 0 2w −w 0
8 −1 0 0 2w −w 0 2v −v 0

(27)
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For some purposes it is useful to replace a pair of complex conjugate characters
by their real sum, and to fuse a conjugacy class with its inverse class. This give us
a simplified table

1 1 1 1 1 1 1
U(1) = SO(2) 2 2 2 2 −1 −1 −1

SO(3) 3 3 3 −1 0 0 0
SU(2) 2 2 −2 0 −1 −1 1
U(2) 4 4 −4 0 1 1 −1
SU(3) 8 −1 0 0 2 −1 0
U(3) 16 −2 0 0 −2 1 0

(28)

The first column gives the name of the compact Lie group generated by the finite
group, from which we can see a close relationship to the gauge group of the Standard
Model. The even-numbered rows contain the basic building blocks U(1), SU(2) and
SU(3) respectively, and the other rows contribute to the ‘mixing’ between these
three groups.

4.4. The faithful characters. Finally we take a 3-dimensional complex faithful
representation of G27, with inertial quotient Q8oZ3, so that Clifford theory implies
that we must now tensor with all the representations of the latter group.

Let us arrange the conjugacy classes grouped together into scalar multiples. The
we only need to specify the character value on one of these classes, and multiply by
the appropriate scalars to get the others. In three cases an element is conjugate to
its scalar multiples, so that the character values are all 0, while in the other seven
they are not. Writing t for v − w =

√
−3, the 14 faithful complex characters are

the following together with their complex conjugates.

3 0 −1 −1 t 0 t −t 0 −t
3 0 −1 −1 vt 0 vt −wt 0 −wt
3 0 −1 −1 wt 0 wt −vt 0 −vt
9 0 −3 1 0 0 0 0 0 0
6 0 2 0 −t 0 t t 0 −t
6 0 2 0 −vt 0 vt wt 0 −wt
6 0 2 0 −wt 0 wt vt 0 −vt

(29)

It is not really necessary to write out this table in full, since, as noted above, the
seven rows are obtained by multiplying the first row with the seven irreducible
characters of the binary tetrahedral group, that is the first seven characters of
(27). If we take the latter to describe properties of leptons, then (29) describes the
corresponding properties of quarks.

5. Action on spinors and Dirac matrices

5.1. Factorisation of the Dirac matrices. As noted in Section 1.4, the quater-
nionic Dirac matrices factorise in 40 different ways as a commuting product of three
copies of Q8. I have tentatively proposed to identify one copy as a generation or
flavour group, and another as a (non-relativistic) spin group. The third therefore
has to deal with both relativistic corrections and weak isospin. This interpreta-
tion may or may not be suitable: it all depends on how the Gell-Mann and Pauli
matrices act on the Dirac matrices in this model.
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First note that the Gell-Mann matrices preserve this decomposition, but the
Pauli matrices do not. This means that the Pauli matrices (representing the weak
interaction) mix the flavour group with the spin group, in particular. This is the
characteristic experimental property of beta decay, as measured by the Wu exper-
iment [34] in 1957: the first-generation electron/neutrino flavour is coupled to the
direction of spin and the direction of momentum. Hence this mathematical property
of the model is fundamentally linked to the ‘chirality’ of the weak interaction.

To illustrate this in more detail, consider the first of the Pauli matrices repre-
sented in (23), acting by conjugation on the quaternionic Dirac matrices in (8), but
with the labelling of the real part given in (18) and (19). The first row of (8) then
maps to 

i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

 ,


0 0 j 0
0 0 0 j
j 0 0 0
0 j 0 0

 ,


0 0 −j 0
0 0 0 j
−j 0 0 0
0 j 0 0

 .(30)

In particular, the ‘flavour’ matrix has been multiplied by the diagonal matrix
γ0γ2, which combines elements from both the ‘spin’ and ‘weak isospin’ copies of
Q8, as we would expect from experiment. The ‘spin’ matrix has acquired a factor
of j, corresponding to complex conjugation in the Standard Model, that swaps the
left-handed and right-handed Weyl spinors. The ‘weak isospin’ matrix has also
acquired a factor of j, but how this should be interpreted I am not sure.

5.2. Action of Gell-Mann matrices. We now consider the Gell-Mann matrices
(21). The first pair, that is the real matrices, representing colourless gluons, com-
mute with the ‘flavour’ Q8, consisting of ‘scalar’ matrices. Since they have order
3, they cannot swap the other two factors, so they fix both the ‘spin’ and ‘weak
isospin’ copies of Q8. The precise action on spin can be calculated as follows:

1

2


−1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

1

2


−1 1 1 1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1



=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

(31)

which shows that these gluons have the effect of changing the direction of spin from
the z direction to the x and y directions.

The action on the third copy of Q8 is similar:

1

2


−1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

1

2


−1 1 1 1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1



=


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

(32)
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Here we see a conversion from γ0γ5 to iγ5 (and also to iγ0), which indicates a
mixing of some kind with the weak interaction, as well as a conversion of (kinetic)
energy into some other form. This may perhaps describe the way in which the
strong force creates mass for pseudoscalar mesons.

5.3. Colour. The action of the coloured gluons is a good deal more complicated,
since they act by permuting the three copies of Q8. Thus they map spin symmetries
to flavour symmetries and weak isospin symmetries, which seems to imply that the
entire structure of spacetime breaks down once we look at the internal structure of
a baryon. In other words, at distances less than about 10−15m, it no longer makes
sense to talk about ‘space’ at all. Dividing by the speed of light to convert distance
to time, we obtain a cutoff of around 3×10−24s below which it does not make sense
to talk about ‘time’. This is roughly (to within a factor of 2) the lifetime of the
most unstable mesons and baryons in the Standard Model. Note however that the
lifetime of the W and Z bosons is an order of magnitude smaller, indicating that
the process of beta decay of a neutron takes place on this even smaller scale of both
time and space, where spacetime may behave strangely.

It is straightforward to compute the action of the coloured gluons on the Dirac
matrices, and verify that the action is compatible with (7). Hence the latter no-
tation provides a simpler way to see the action, if we interpret the three complex
coordinates as representing the three Q8 factors. In this way the diagonal matrices
represent the colourless gluons, and the coloured gluons permute the three factors.

5.4. Action on spinors. The above analysis shows that the finite group G27 o
Q8 o Z3 takes the ‘spin’ copy of Q8 to a total of 12 distinct copies within the
quaternionic Dirac matrices. Moreover, in each case there is still a choice of 9
elements to represent the energy in γ0. In other words, in this model the nuclear
forces act to change the shape of spacetime, at least locally. In principle this gives
us a mechanism for relating the mass that is created or destroyed by the weak and
strong forces (and potentially also the Higgs field) to the shape of spacetime that
determines the gravitational field in General Relativity. However, an analysis of the
Dirac matrices from this point of view will be enormously complicated, so I make
no attempt to do this here.

Indeed, before considering such action on the quaternionic Dirac matrices we
should investigate in much more detail the action on the quaternionic Dirac spinors,
which is of course quite distinct. Whilst the Standard Model splits the complex
Dirac spinor into two pieces, the left-handed and right-handed Weyl spinors, the
splitting here is into four pieces, which do not naturally have a complex (Weyl
spinor) structure, but rather a quaternionic structure. We can recover the standard
description by choosing a complex structure, which breaks the symmetry between
the three generations, and at the same time defines a particular copy of the Lorentz
group among the many that are available.

The hope is, therefore, that by not breaking the symmetry of the quaternions,
we can also avoid the necessity to choose a definition of inertial frame. Or, to put it
another way, the finite group implies that there is a ‘mixing’ between the generation
symmetry and the choice of inertial frame. This type of mixing between particle
physics and gravity was first considered by Einstein [41] in 1919, but has not found
favour in mainstream physics, in which the separation between gravity and particle
physics has been rigorously maintained.
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Nevertheless, the choice of the laboratory frame of reference as ‘inertial’ is fraught
with problems, particularly in cases where an experiment spans two different labo-
ratories, with very different definitions of inertial frame. The model proposed here
implies that such a change in inertial frame should be reflected in a change in ‘gener-
ation’ of fermions. Of course, there is no experimental evidence that the generation
of an electron is affected in this way, but there is a lot of experimental evidence
that the generation (flavour) of a neutrino is [42]. Indeed, it is shown in [9] that
by inserting the masses of the three generations of electron into the representations
of the Z3 quotient of our finite group, the experimental value of the mixing angle
between electron neutrino and muon neutrino can be obtained. In other words, the
model implies that the electron and neutrino generations are coupled together in a
more complicated way than in the Standard Model.

As regards quarks, the evidence is more equivocal, and would require more de-
tailed analysis. But again, the model we are considering here allows us to put the
masses of three generations of electron into a quaternion representation of Q8oZ3,
together with a proton or neutron, from which the correct experimental value for
the mixing angle between second and third generation quarks can be calculated
[9]. Again, this suggests a more complicated relationship between lepton and quark
generations than is implied by the Standard Model.

6. Conclusion

The suggestion that physics might be fundamentally discrete, and that the ap-
parently continuous behaviour we often observe is an illusion, goes back a long way.
In the context of quantum mechanics, this suggestion was made by Einstein [35]
as early as 1935, but no discrete theory was found to rival the continuous models
based on the Schrödinger equation and then the Dirac equation. The Standard
Model of Particle Physics, largely completed by the mid 1970s, is entirely based
on continuous groups, so much so that the emergence of discrete experimental ob-
servations is still not explained in a totally convincing way. Theories beyond the
Standard Model are almost without exception continuous theories.

A few lone voices, such as ’t Hooft [36], still speak out in favour of Einstein’s
dream of a discrete foundation, even if this has to be at the Planck scale. But
a convincing discrete model is still lacking, and few people are seriously looking
for one. The ones I have put forward in [9, 37, 38, 39, 10, 40] all suffer from
drawbacks of various kinds, most notably the lack of any convincing analogue of
the colour SU(3), which is an essential and very successful part of the Standard
Model. Nevertheless, it is a mathematical fact that finite groups are much more
complicated than Lie groups, and quite small finite groups can model properties
that cannot be modelled with Lie groups at all.

In this paper, therefore, I have tried to remedy this defect by explicitly proposing
a finite analogue or precursor of SU(3). At a combinatorial (qualitative) level it has
many desirable properties that mirror known experimental properties of elementary
particles, in particular the chirality of the weak interaction, and the mixing of
electromagnetism and the weak and strong nuclear forces. Quantitative analysis of
masses, mixing angles and probability amplitudes is beyond the scope of this paper,
as it requires detailed investigations of coordinates for the representations.
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